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SIMPLIFICATION OF THE ROLLING CONTACT-RELATED LIFETIME 

CALCULATION OF PROFILED RAIL GUIDES WITH A POLYNOMIAL 

REGRESSION 

The calculation of the lifespan of profile rail guides is an essential part in the design process of machines. 

Conventional lifespan models yield good results when calculating lifespan values under a homogeneous 

distribution of individual rolling contact forces on the raceways. In the case of an uneven load distribution, 

significantly too low lifespan values are calculated, resulting in a considerable loss of lifetime potential. The novel 

and experimentally validated rolling contact-based lifespan calculation (RCBL) takes the transferred force on each 

rolling element into account, resulting in more realistic lifespan values that can be up to 4 times higher than those 

obtained through the classical method. The disadvantage lies in the complex calculation of the necessary individual 

rolling contact forces, which until now has been done by using extensive finite element models, along with  

the computationally intensive optimization problem of the RCBL. To overcome these disadvantages, a method is 

introduced that efficiently calculates the individual rolling contact forces, taking into account all relevant system 

elasticities, and pre-solves the RCBL for a variety of potential superimposed load combinations. The results are 

subsequently approximated through an analytical multiparametric polynomial function and can be utilized with 

the conventional lifespan formula for rolling bearings. 

1. INTRODUCTION AND STATE OF THE ART 

Profiled rail guides with rolling bearing supports are standard elements in mechanical 

and plant engineering that enable linear guided relative movements between components. 

They fulfil the constantly increasing requirements for precision, load capability and cost-

effectiveness. Profiled rail guides are force-transmitting elements that are subjected to wear, 

which means that the machine accuracy depends largely on the state of wear. Machine 

downtimes caused by wear are a major drawback for cost-effective production, which is why 

it is very important to calculate the expected lifetime of the profiled rail guides as precisely 

as possible. Many approaches have been developed to estimate the expected lifetime of pro-
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filed rail guides. The conventional calculation methods have deficits in terms of prediction 

accuracy, which can be overcome with a rolling contact-related lifetime calculation (RCLE) 

[1]. For loads that cause a homogeneous or almost equal load distribution on all rolling 

elements, as is the case with vertical and horizontal forces Fz and Fy as well as rolling 

moments Mx (Fig. 2), good and often experimentally validated lifetime values can be 

calculated using the standard lifetime formula (1). The superimposed loads can be combined 

with (2) to an equivalent force Fcomb, taking into account the described restrictions [2]. 

 

𝐿 = 𝑎1 ∙ (
𝐶𝑑𝑦𝑛

𝐹𝑐𝑜𝑚𝑏
)

𝑝

∙ 𝐿𝑅𝑒𝑓 with a1=1 (survival probability 90%) (1) 

𝐹𝑐𝑜𝑚𝑏 = |𝐹𝑦| + |𝐹𝑧| + 𝐶𝑑𝑦𝑛 ∙
|𝑀𝑥|

𝑀𝑇

+ 𝐶𝑑𝑦𝑛 ∙
|𝑀𝑦|

𝑀𝐿

+ 𝐶𝑑𝑦𝑛 ∙
|𝑀𝑧|

𝑀𝐿

 (2) 

where: a1 – lifetime coefficient, Cdyn – dynamic load rating in N, Fcomb – equivalent force in 

N, p – lifetime exponent, LRef – reference lifetime in km, Fy – horizontal force in y-direction 

in N, Fz – vertical force in z-direction in N, Mx – rolling moment in Nm, My – pitching 

moment in Nm, Mz – yawing moment in Nm, MT – torsional load moment in Nm, 

ML – longitudinal load moment in Nm. 

Too low lifetime values are calculated for pitching moments My and yawing moments 

Mz, as these loads cause an inhomogeneous load distribution on the rolling elements. With 

the rolling contact-related lifetime calculation, the probability of survival in each rolling 

contact can be considered and an overall probability of survival of the profiled rail guide can 

be calculated (3)–(8) [1]. Based on the rolling contact-related dynamic load rating CSC and 

the force in each rolling element FSC i, the lifetime (4) is adjusted iteratively until equation (3) 

is fulfilled. The calculation of the rolling contact-related dynamic load rating is carried out 

with a homogeneous load case, for which (1) is fully valid and the calculated lifetime is known 

accordingly, and known individual rolling contact forces FSC i iteratively with (7) and the 

associated equations. The individual rolling contact forces are determined by calculation 

according to the state of the art, as no suitable measurement methods are known yet.  

A summary of the known calculation methods used here is presented in section 3. 

𝑃𝑊 = ∏ 𝑃𝑆𝐶 𝑖

𝑁𝑅𝐸 𝑚𝑎𝑥

𝑖=1

= 𝑆 (3) 𝐿𝑆𝐶 𝑖 = 𝐿𝑅𝐶𝐿𝐸  (4) 

𝑃𝑆𝐶 𝑖(𝑎1 𝑆𝐶 𝑖) =  ((
1

0.9
)

𝑎1 𝑆𝐶 𝑖
1.5

)

−1

 (5) NRET max = int (
lcarriage

DRE nom

) + 1 (6) 

𝑎1 𝑆𝐶 𝑖 =
𝐿𝑆𝐶 𝑖

(
𝐶𝑆𝐶

𝐹𝑆𝐶 𝑖
⁄ )

𝑝

∙ 𝐿𝑅𝑒𝑓

 
(7) 𝑁𝑅𝐸 𝑚𝑎𝑥 = 𝑁𝑅𝐸𝑇 𝑚𝑎𝑥 ∙ 𝑁𝑇 (8) 

 

where: PW – survival probability of the linear guideway, S – desired survival probability, 

PSC – survival probability for one contact, LRCLE – RCLE lifetime of the whole guideway, 

a1 SC – lifetime coefficient for one contact, LSC – lifetime for one contact, CSC – dynamic 



62  D. Staroszyk et al./Journal of Machine Engineering, 2024, Vol. 24, No. 1, 60–73  

 

 

load rating for one contact, FSC – force on one contact, NRET max – maximum number of 

rolling elements on one track, NRE max – maximum number of rolling elements on all tracks, 

NT – number of tracks, lcarriage – length of the carriage, DRE nom – nominal diameter of rolling 

elements. 

2. EXPERIMENTAL VALIDATION OF THE RCLE 

The individual rolling contact-related lifetime calculation was examined for validity in 

experimental lifetime tests. Two series of tests were carried out with size 25 ball profiled rail 

guides with 8% preload. The first was carried out with a centric vertical force Fz = – 14300 N 

in accordance with DIN 631 [3] (homogeneous load distribution) in order to determine  

the real dynamic load rating Cdyn exp of the examined profiled rail guide charge. The second 

series of tests was carried out with an eccentric vertical load Fz = –5250 N (35 mm lever arm), 

resulting in a superimposed pitching moment My (inhomogeneous load distribution), based 

on DIN 631, in order to verify the RCLE. This load was chosen in order to achieve a compa-

rable calculated lifetime as for test series 1 and to maximize the inhomogeneity of the load 

distribution on the rolling element raceways. 

The lifetime values achieved in each of the tests are evaluated using a Weibull analysis 

in accordance with the specifications of DIN 631. The test parameters and results can be found 

in Fig. 1 and Table 1. The dynamic load rating specified by the manufacturer could not be 

confirmed in the first series of tests, as the experimental lifetime on the Weibull equilibrium 

line for a failure probability of 10% with Lexp = 435 km is less than the calculated lifetime  

of Lcalc = 800 km. The achieved experimental lifetime Lexp results in a real dynamic load rating 

Cdyn exp = 23360 N. If this dynamic load rating is used for the calculation of the rolling contact-

related load rating Cdyn exp RC (see Section 1), a lifetime of Lcalc = 339 km is calculated with  

the RCLE for the load case of the 2nd test series (inhomogeneous load distribution).  

The lifetime achieved experimentally for this 2nd load case is Lexp = 446 km and is greater in 

comparison to the RCLE, which means that the RCLE can be considered validated. Compared 

to the conventional catalogue method, a 3.4-fold higher lifetime was calculated with  

the RCLE and a 4.5-fold higher lifetime was achieved in the tests. 

 

Fig. 1. left: Weibull-analysis for a centric load, right: Weibull-analysis for an eccentric load 
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Table 1. Experimental parameters and results 

 
Catalogue 

centric 

RCLE  

centric 

Catalogue 

eccentric 
RCLE eccentric 

Cdyn (Cdyn RC) 28600 N (3450 N) 

Load Fz = –14300 N Fz = –5250 N; My = 183.75 Nm 

Calculated lifetime Lcalc 800 km 800 km 183 km 793 km 

 Experimental results 

Exp. lifetime (Weibull) Lexp 435 km 446 km 

Cdyn exp. (Cdyn exp. RC) 23360 N (2139 N) / 

Calculated lifetime with Cdyn exp. 435 km 435 km 100 km 339 km 

The calculation of the RCLE is associated with complex calculations, as both the RCLE 

itself must be calculated iteratively using a suitable optimizer and the required individual 

rolling contact forces must be calculated using a comprehensive calculation procedure. As  

a result, the RCLE can only be calculated with specially programmed software tools, whereby 

it is neither computationally efficient nor user-friendly and therefore not suitable for a more 

general application. This deficit can only be solved with an analytical and therefore easy-to-

use calculation method. In order to achieve this goal, the RCLE, including the calculation  

of the individual rolling contact forces, can be pre-calculated for a large number of complex 

superimposed load combinations. With these results, the RCLE can then be converted into an 

analytical form using a multi-parametric polynomial regression. This simplifies the 

calculation of the RCLE, as only a few input parameters are required and only a few 

calculation operations need to be performed. By saving computational resources, the RCLE 

could be implemented directly in machine control systems, for example, in order to consider 

real operating conditions in the RCLE (see section 5 for more details). 

To illustrate the necessary simplification of the RCLE, the extensive steps for calculating the 

individual rolling contact forces are briefly summarized in Section 3. 

3. CALCULATION OF THE SINGLE ROLLING CONTACT FORCES 

Many approaches can be found in the literature as to how the single rolling contact forces 

of profiled rail guides can be calculated. Most works use FE models [1, 4–7] or develop 

analytical calculation methods, whereby the elastic conditions in the Hertzian rolling contact 

are considered, but the elasticities of the rail and carriage bodies are not taken into account 

[1, 8–17]. Although these elasticities are considered in other works, the calculation 

approaches are unsuitable, as they either show very large deviations from experimental 

measurements [18–22] or are very computationally time-consuming [6–7]. Only Sarfert et. al 

[23] describe an analytical method for considering all system elasticities with the help  

of influence numbers and Castigliano's theorem, which provides good results and a starting 

point for the calculation steps summarized below. None of the works listed describe a holistic 

calculation approach that is suitable for the RCLE, which is why the most important steps for 

calculating the single rolling contact forces are described in this section. 

As it is not possible to measure the single rolling contact forces directly, numerically 

calculated FE models provide the most precise calculation results. The profiled rail guide to 
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be calculated must be modelled in a suitable manner, which requires a lot of expertise and 

experience, as the quality of the calculation results depends heavily on the selected modelling 

strategy. The modelling and calculation of the FE model is both time-consuming and 

resource-intensive and requires special software, which is usually not available to the user 

[24]. 

For the analytical regression model presented in this paper, many load combinations 

must be calculated in order to train the regression model with a sufficient number of load 

cases. The computational effort of the FE model is too high for this, which makes a more 

analytical and thus more computationally efficient way of calculation necessary. 

The most basic model for the analytical calculation of the single rolling contact forces 

considers the geometric and elastic conditions in the rolling contact areas according to Hertz. 

The elasticities of the carriage and rail body are initially neglected. In this model, the 

flattening of each rolling element is calculated according to (10), based on a relative 

displacement of the carriage with reference to the rail, and from this the single rolling contact 

force is determined according to (9) [25]. The flattening in each rolling element is determined 

by the difference in displacement of the centres of the raceway radii, which in turn results 

from the rolling element displacements zRE and yRE and the geometric conditions in the rolling 

contact (Fig. 2). The rolling element displacements result from the relative displacements  

of the carriage in relation to the rail. The contact angles αRER that occur under load for ball 

profiled rail guides are thus calculated correctly and considered in the transformation matrix 

T (5×NRE max) in the calculation of the resulting loads B (1×5). The preload of the profiled rail 

guide can be considered by an initial flattening or preload of the “Hertz spring”. 

 

Fig. 2. Geometric conditions in the rolling contact 

𝐹𝑆𝐶 = 𝛿𝑅𝐸 𝑟𝑖𝑔𝑖𝑑
1.5 ∙ 𝐶𝛿 (9) 

𝛿𝑅𝐸 𝑟𝑖𝑔𝑖𝑑 = 𝑠𝐶𝐶 1 − 𝑠𝑐𝑐 0 (10) 

𝑏𝑖 = ∑ (𝑡𝑖,𝑘 ∙ 𝐹𝑆𝐶 𝑘)

𝑁𝑅𝐸 𝑚𝑎𝑥

𝑘=1

 (11) 

𝑩 = (𝐹𝑧 𝐹𝑦 𝑀𝑦 𝑀𝑧 𝑀𝑥)𝑻 (12) 
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where: δRE – rolling element flattening, Cδ – geometric factor, sCC 0 – distance between the 

centres (CT) of the track radii (rT) in the initial state, sCC 1 – distance between the centres 

(CT) of the track radii (rT) in the load state for the contact, B – load vector, 

T – transformation matrix. 

Based on this, the carriage and rail elasticities can be considered using the influence 

numbers approach and Castigliano's theorem [23]. For this purpose, the rolling element 

flattening of the “rigid solution” at rolling element i (10) is reduced by an elastic component 

(13), which is caused by all rolling contact forces of the rolling elements k on the point i (14). 

𝛿𝑅𝐸 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑖 = 𝛿𝑅𝐸 𝑟𝑖𝑔𝑖𝑑 𝑖 − 𝛿𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 𝑖(𝛿𝑅𝐸 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑘) (13) 

𝛿𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 𝑖(𝛿𝑅𝐸 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑘) = ∑ (𝑔𝑘,𝑖 ∙ 𝛿
𝑅𝐸 𝑒𝑙𝑎𝑠𝑡𝑖𝑐  𝑘

3
2 ∙ 𝐶𝛿)

𝑁𝑅𝐸 𝑠𝑢𝑚

𝑘=1

 (14) 

 

where: G – influence number matrix, δinfluence – elastic influence of all rolling element 

forces. 

The non-linear system of equations is solved using the Newton method and the influence 

number matrix G can be calculated once using an FE model. The single rolling contact forces 

can then be calculated with (13) analogous to (9). The calculation time of the extended elastic 

analytical model is approx. 1.5 s in Matlab and calculates similarly precise results as an FE 

model (see Fig. 3). 

 

Fig. 3. Distribution and comparison of the calculated rolling contact forces 

4. ANALYTICAL CALCULATION OF THE RCLE 

The workflow described for calculating the RCLE involves a lot of complex calculation 

steps, some of which have to be performed iteratively. A programming implementation is 

therefore very complex and requires special software and a lot of specialist knowledge. This 

can be rectified by an analytical implementation of the RCLE, which is able to model all 
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relevant influencing variables, but greatly simplifies the mathematical complexity and thus 

the use of the RCLE. The aim is to calculate the RCLE lifetime LRCLE analytically from the 

specified load or displacement parameters. For this purpose, a multi-parametric polynomial 

regression is performed in the hyperplane of the 5th degree, which has as input parameters 

either the 5 loads or the 5 displacements in the freedoms constrained for a profiled rail guide. 

In order to train the regression model, a large number of possible load or displacement 

combinations must be calculated in advance using the methods described for calculating the 

RCLE, including the calculation of the single rolling contact forces ((3)–(8)). Since the load 

distribution model (Fig. 2) and ((9)–(12)) has the relative displacements of the carriage in 

relation to the rail as input parameters and the resulting loads B as output parameters, it is 

practical to specify ranges of carriage displacements for the training data, within which 

discrete displacement combinations are calculated. The defined ranges are shown in Table 2. 

The range limits were defined in such a way that the profiled rail guide is not yet overloaded 

in the most unfavourable displacement combination (e.g. due to edge running or excessive 

contact pressures in the Hertz contacts). The range limits shown and the specified step widths 

result in a total of 16807 (m5 calculations with m=7 displacement values per displacement 

direction) necessary calculations of the RCLE. 

If the loads were specified directly with corresponding range limits for the calculation 

of the training data, the carriage displacements would first have to be calculated iteratively 

with the load distribution model of the profiled rail guide, which would significantly increase 

the calculation time. With equation (11), however, the resulting loads are also available as 

information for the regression model with the specification of the carriage displacements. 

Table 2. Ranges for the displacement parameters 

Displacement Range 

Sz −22.5 µ𝑚 ∙ 0.5𝑛 … 0 … 5.625 µ𝑚 ∙ 2𝑛 

Sy −22.5 µ𝑚 ∙ 0.5𝑛 … 0 … 5.625 µ𝑚 ∙ 2𝑛 

αpitch −750 µ𝑟𝑎𝑑 ∙ 0.5𝑛 … 0 … 187.5 µ𝑟𝑎𝑑 ∙ 2𝑛 

αyaw −750 µ𝑟𝑎𝑑 ∙ 0.5𝑛 … 0 … 187.5 µ𝑟𝑎𝑑 ∙ 2𝑛 

αroll −750 µ𝑟𝑎𝑑 ∙ 0.5𝑛 … 0 … 187.5 µ𝑟𝑎𝑑 ∙ 2𝑛 

 𝑤𝑖𝑡ℎ 𝑛 = 0 … 2 

The information from the calculated training data can be used to set up various 

regression models. First of all, a distinction can be made as to whether either the relative 

displacements D (equation (20)) of the carriage or the loads B on the carriage are to be used 

as independent variables (input parameters). In the design process of a machine with profiled 

rail guides, it is primarily the load parameters that are available as information, whereas 

during operation of the profiled rail guides, the relative displacements of the carriage in 

relation to the rail can be measured using suitable sensors. In a first regression approach,  

a regression model is trained in for each of these cases, which directly calculates the RCLE 

lifetime LRCLE as a dependent variable (DL-model and BL-model). Table 3 shows the 

coefficient of determination R2, which describes the goodness of fit of the regression, for 

different polynomial degrees. For both the BL-regression model and the DL-regression 

model, the best regression quality is achieved with a polynomial degree of 4. For the BL-

regression model, the regression quality is slightly better. 
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Table 3. Polynomial degree and coefficient of determination R for the BL and DL-regression models 

Polynomial degree R2 BL-model R2 DL-model 

2 0.3933 0.4464 

3 0.5585 0.4613 

4 0.6720 0.6139 

5 0.5098 0.6144 

6 -2.0829 0.6159 

In order to validate the regression models, 16807 further calculations were carried out 

with randomly selected displacement combinations within the limits shown in Table 2. For 

each of these calculations, the exact RCLE-value and the RCLE-value estimated with  

the regression models were calculated. In order to be able to quantify each of the loads on the 

profiled rail guide in a parameter, the equivalent force was also determined, which would 

have to be used in the standard lifetime formula according to (1) in order to calculate  

the correct RCLE lifetime LRCLE (15). 

𝐹𝑒𝑞 =
𝐶𝑑𝑦𝑛 𝑒𝑥𝑝

√
𝐿𝑅𝐶𝐿𝐸

𝑎1 ∙ 𝐿𝑟𝑒𝑓

𝑝

 

(15) 

The test data with the randomly superimposed displacements were sorted in ascending 

order based on this equivalent force and displayed in the figures, whereby the exact RCLE 

lifetime, the RCLE lifetime estimated with the corresponding regression model, the lifetime 

according to the catalogue method and the confidence interval around the exact RCLE are 

compared (Fig. 4). The confidence interval was determined on the basis of the Weibull 

analysis of the experimental lifetime tests carried out, whereby the RCLE was calculated for 

this with rolling contact-related dynamic load ratings, which result according to the B10 

running values of the experimental confidence range (see Fig. 1). 

For the BL- and DL-regression models, it is seen that many lifetime values lie outside 

the confidence intervals, which are considered here as limit values for an accuracy 

assessment. The relatively low coefficients of determination of approx. 0.67 and 0.61 also 

indicate an inadequate prediction quality. The problem is due to the fact that the calculated 

lifetime values depend in principle on the load via an inverse cubic function (see equation 

(1)), which can only be inadequately approximated by polynomials. 

To improve the prediction quality, the inverse cubic relationship must be eliminated 

from the regression model. One way to achieve this is to use the regression model to estimate 

only the equivalent force Feq according to equation (15), which must be inserted into the 

standard lifetime formula (1) to calculate the RCLE lifetime LRCLE (DF-model and BF-model). 

Although this requires an additional calculation step, the additional calculation effort of the 

standard lifetime formula is only small. As can be seen in Table 4, the coefficients  

of determination R2 for the BF- and DF-regression models are significantly higher than for 

the BL- and DL-regression models (Table 3). For both the BF- and DF-regression models, 

the optimal coefficient of determination is reached at a polynomial degree of 4 and is close to 

the optimum of 1.0. With a coefficient of determination of 0.99, the BF-regression model is 

more precise than the DF-regression model. 
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Fig. 4. LRCLE-regression results left: BL-model right: DL-model 

Table 4. Polynomial degree and coefficient of determination R for the BF- and DF-regression models 

Polynomial degree R2 BF-model R2 DF-model 

2 0.9496 0.8152 

3 0.9748 0.9570 

4 0.9907 0.9685 

5 0.8894 0.9694 

6 0.2596 0.9694 

For both regression models, the calculated lifetime values with the estimated equivalent 

forces are almost completely within the confidence interval (see Fig. 5). In accordance with 

the slightly better coefficient of determination, the BF-regression model can be used to 

calculate lifetime values that are closer to the exact RCLE. 

 

Fig. 5. Feq-regression results left: BF-model right: DF-model 

For the BF- and DF- regression models in particular, it is clear that although the lifetime 

values estimated using these models scatter around the exact RCLE lifetime values, they are 

still largely within the confidence interval of the lifetime to be expected in reality. Compared 

to the lifetime values calculated using the conventional catalogue method, which are clearly 

too low, a more realistic lifetime can be determined using the regression models, whereby  

the calculation effort is many times less than when calculating the exact RCLE. 
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Figure 6 shows the percentage deviations of the 4 regression models presented for the 

exact individual rolling contact-related lifetime calculation as a function of the lifetime.  

The percentage deviation values of the data points were calculated in blocks of 200 km for 

the illustration. The first data point in each of Fig. 6 represents the percentage deviation for 

the range 0 km to 200 km, the second the deviations from 200 km to 400 km and in such  

a way. The course of the average error and the median error values have a similar quantitative 

and qualitative course, which is characteristic of approximately uniformly distributed data 

and a regression that minimizes the error squares. The regression models that calculate the 

equivalent force for the standard lifetime formula show significantly lower percentage 

deviations from the exact RCLE, especially in the lifetime ranges below 2000 km. 

The regression was performed with the Python library scikit-learn [26]. For each 

regression model, scikit-learn outputs the power matrix pow (n×5), the coefficient vector 

coeff (n×1) and the intercept inter. This allows the regression results to be calculated for any 

combination of parameters when the loads on the profiled rail guide are specified using (16) 

and (18) and when the relative carriage displacements are specified according to (17) and 

(18). For the calculation of the estimated RCLE, it is recommended to choose the BF- or DF-

regression model, with which the equivalent force is calculated, which can then be used in the 

standard lifetime formula (1), as the percentage deviations from the exact RCLE are lower 

compared to the other regression approaches (BL- and DL-model). 

 

 

Fig. 6. Errors of the predicted lifetime values compared to the exact RCLE top left:  

mean error top right: median error bottom left: max error bottom right: min error 
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𝐹𝑒𝑞 𝑜𝑟 𝐿𝑅𝐶𝐿𝐸 = ∑(𝑐𝑜𝑒𝑓𝑓𝑖 ∙ 𝐹𝑧
𝑝𝑜𝑤𝑖,1 ∙ 𝐹𝑦

𝑝𝑜𝑤𝑖,2 ∙ 𝑀𝑦
𝑝𝑜𝑤𝑖,3 ∙ 𝑀𝑧

𝑝𝑜𝑤𝑖,4 ∙ 𝑀𝑥
𝑝𝑜𝑤𝑖,5 ∙)

𝑛

𝑖=1

+ 𝑖𝑛𝑡𝑒𝑟 (16) 

𝐹𝑒𝑞 𝑜𝑟 𝐿𝑅𝐶𝐿𝐸 = ∑(𝑐𝑜𝑒𝑓𝑓𝑖 ∙ 𝑠𝑧
𝑝𝑜𝑤𝑖,1 ∙ 𝑠𝑦

𝑝𝑜𝑤𝑖,2 ∙ 𝑎𝑦
𝑝𝑜𝑤𝑖,3 ∙ 𝑎𝑧

𝑝𝑜𝑤𝑖,4 ∙ 𝑎𝑥
𝑝𝑜𝑤𝑖,5 ∙)

𝑛

𝑖=1

+ 𝑖𝑛𝑡𝑒𝑟 (17) 

𝑛 =
(𝑚 + 5)!

𝑚! ∙ 5!
− 1 (18) 

 

where: n – number of coefficients, m – polynomial degree (in this example m = 4), 

coeff – vector of regression coefficients, inter – independent term in the regression model, 

sz – displacement in z in m, sy – displacement in y in m, αy – pitching angle of the carriage 

in rad, αz – yawing angle of the carriage in rad, αx – rolling angle of the carriage in rad. 

5. FURTHER POSSIBLE APPLICATIONS OF THE REGRESSION MODEL 

The calculated data can also be used to train other regression models that do not have 

the objective of a lifetime calculation. For example, the relative displacements of the carriage 

with specified loads on the profiled rail guide can be calculated according to equation (19) in 

order to determine the stiffnesses in all freedoms in the machine design process. The result of 

the regression model is a displacement vector D according to equation (20) (m = 3; 

R2 = 0.9900). 

𝑑𝑘 = ∑(𝑐𝑜𝑒𝑓𝑓𝑘,𝑖 ∙ 𝐹𝑧
𝑝𝑜𝑤𝑖,1 ∙ 𝐹𝑦

𝑝𝑜𝑤𝑖,2 ∙ 𝑀𝑦
𝑝𝑜𝑤𝑖,3 ∙ 𝑀𝑧

𝑝𝑜𝑤𝑖,4 ∙ 𝑀𝑥
𝑝𝑜𝑤𝑖,5 ∙)

𝑛

𝑖=1

+ 𝑖𝑛𝑡𝑒𝑟𝑘 (19) 

𝑫 = (𝑠𝑧 𝑠𝑦 𝛼𝑦 𝛼𝑧 𝛼𝑥)𝑻 (20) 

Similarly, a regression model can also be trained which calculates the load vector B (see 

equation (12)) as a function of the relative carriage displacements D (equation (21); m = 4; R2 

= 0.9971). 

𝑏𝑘 = ∑(𝑐𝑜𝑒𝑓𝑓𝑘,𝑖 ∙ 𝑠𝑧
𝑝𝑜𝑤𝑖,1 ∙ 𝑠𝑦

𝑝𝑜𝑤𝑖,2 ∙ 𝛼 𝑦
𝑝𝑜𝑤𝑖,3 ∙ 𝛼𝑧

𝑝𝑜𝑤𝑖,4 ∙ 𝛼𝑥
𝑝𝑜𝑤𝑖,5 ∙)

𝑛

𝑖=1

+ 𝑖𝑛𝑡𝑒𝑟𝑘 (21) 

 

The model can be implemented very easily and memory-efficiently in a machine control 

system, which allows indirect force measurement if the displacements are measured in  

a suitable manner, for example using capacitive or inductive distance sensors. To validate this 

regression model, the carriage displacements for the size 25 ball profiled rail guide with 8% 

preload discussed here were recorded with capacitive distance sensors under a vertical tensile 

and compressive load (Fig. 7. top) and under a pitching moment load that was superimposed 

with a vertical load (Fig. 7 bottom). The measurement results were compared with the 

calculation results of the exact load distribution model and the regression model. As the 

absolute carriage displacements for the measurement and model calculations are very close 

to each other, the difference between the exact load distribution model and the regression 
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model and the measured values was formed for each of them in Fig. 7 on the right for a better 

assessment of the results. The absolute carriage displacements (Fig. 7 left) are nevertheless 

shown for a better assessment of the results.  

 

Fig. 7. Comparison of the experimentally measured and calculated carriage displacements 

The results of the regression model are similarly precise as the results of the exact load 

distribution model. The deviations from the measured values are less than 500 N for a tensile 

and compressive load and around 10 Nm for a pitching moment load for the regression model 

and 5 Nm for the exact load distribution model. The stiffness of profiled rail guides exhibits 

a hysteresis for loading and unloading. This is not modelled in the exact load distribution 

model and therefore also not in the regression model, which results in the hysteresis-related 

course of the differences in Fig. 7 on the right. 



72  D. Staroszyk et al./Journal of Machine Engineering, 2024, Vol. 24, No. 1, 60–73  

 

 

6. CONCLUSIONS 

This paper describes a method for simplifying the complex calculations of the single 

rolling contact-related lifetime calculation of profiled rail guides (RCLE). For this purpose, 

the validity of the RCLE is first demonstrated by experimental lifetime tests and the steps for 

calculating the RCLE are presented. To reduce the calculation effort, various multi-parametric 

polynomial regression models are trained, which estimate the lifetime values of the RCLE 

based on an analytical equation. To generate the training data, a large number of possible load 

combinations are systematically calculated in advance using the exact RCLE. The regression 

models are then validated with random load combinations (test data). The regression models 

can be used to calculate sufficiently precise lifetime values that lie within the experimentally 

determined confidence intervals of the exact RCLE. Compared to the conventional lifetime 

formula, as specified by many manufacturers in their catalogues, more accurate lifetime 

values for pitch and yaw moments, which cause an inhomogeneous load distribution in the 

rolling element rows, can be calculated quickly and in a computationally efficient way. 
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